Wavefield tomography based on local image correlations

نویسندگان

  • Francesco Perrone
  • Paul Sava
چکیده

The estimation of a velocity model from seismic data is a crucial step for obtaining a high-quality image of the subsurface. Velocity estimation is usually formulated as an optimization problem where an objective function measures the mismatch between synthetic and recorded wavefields and its gradient is used to update the model. The objective function can be defined in the data-space (as in full-waveform inversion) or in the image-space (as in migration velocity analysis). In general, the latter leads to smooth objective functions, which are monomodal in a wider basin about the global minimum compared to the objective functions defined in the data space. Nonetheless, migration velocity analysis requires construction of common-image gathers at fixed spatial locations and subsampling of the image in order to assess the consistency between the trial velocity model and the observed data. We present an objective function that extracts the velocity error information directly in the image domain without computing common-image gathers. Because of the dimensionality of the problem, gradient-based methods (such as the conjugate-gradient algorithm) are used in the optimization procedure. In order to include the full complexity of the wavefield in the velocity estimation algorithm, we consider a two-way (as opposed to one-way) wave operator, we do not linearize the imaging operator with respect to the model parameters (as in linearized wave-equation migration velocity analysis), and compute the gradient of the objective function using the adjoint-state method. We illustrate our velocity estimation methodology with a few synthetic examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferometric imaging condition for wave-equation migration

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components corresponding to large scale and small scale variations. In practice, the large scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small scale component cannot. There...

متن کامل

Velocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack

Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...

متن کامل

Illumination compensation for subsalt image-domain wavefield tomography

Wavefield tomography represents a family of velocity model building techniques based on seismic waveforms as the input and seismic wavefields as the information carrier. For wavefield tomography implemented in the image domain, the objective function is designed to optimize the coherency of reflections in extended common-image gathers. This function applies a penalty operator to the gathers, th...

متن کامل

Subsalt wavefield tomography with illumination compensation

Wavefield tomography represents a family of velocity model building techniques based on seismic waveforms as the input and seismic wavefields as the information carrier. For wavefield tomography implemented in the image domain, the objective function is designed to optimize the coherency of reflections in extended common-image gathers. This function applies a penalty operator to the gathers, th...

متن کامل

Seismic imaging with Wigner distribution functions

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components corresponding to large scale and small scale variations. In practice, the large scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small scale component cannot. When ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012